________________________________________
ttp://bb.7fth.com/if/7fth.com13312553781.pngملخص تصويري لقوانين كبلر الثلاثة.
أثبت العالم الفلكي يوهان كبلر في 1609 ان النظام الذي وضعه كوبرنيكس عن مركزية الشمس هو الوحيد الذي يعكس الحقيقة بدقة. وعن طريق عمليات حسابية معقدة ومتعددة، وضع كبلر القوانين الثلاثة الهامة فيما يتعلق بحركة الكواكب. وهذه القوانين هي:
تدور الكواكب حول الشمس بحركة ليست دائرية ولكن في قطع ناقص تحتل الشمس إحدى بؤرتيه. والقطع الناقص هو الشكل الذي نحصل عليه إذا قطعنا جسماً اسطوانياً بمنشار مائل.
تختلف سرعة الكوكب في دورانه حول الشمس تبعاً لبعده عنها، فإذا كان قريباً، فإنه يدور بسرعة أكبر، وكلما زاد بعده كلما قلت سرعته في الدوران، حيث تتساوى مساحة المثلثين المشكلين فيما بين الشمس وقوس المسافات المغطاة من كوكبين في نفس الوقت.
النسبة بين مربعي فترتي دوران أي كوكبين هي نفسها النسبة بين القيمة التكعبية للبعد المتوسط لكل منهما عن الشمس ومثال
تجدر الإشارة هنا إلى أن قوانين كبلر مشروعة فقط في حالة جسم عديم الكتلة ووحيد (أي لا يتأثر بجاذبية الكواكب الأخرى) يدور حول الشمس. فيزيائياً من المحال تحقيق هذا الشرط ومع ذلك فإن قوانين كبلر لا تزال ذات أهمية كبرى في تقريب الحسابات.
بعد قرن تقريباً بيّن نيوتن أن قوانين كبلر هي نتاج طبيعي لقانونه (التربيع العكسي) في الجاذبية ضمن الشروط الحدّية التي أشير إليها سابقاً. كذلك عمل نيوتن على توسيع قوانين كبلر بطرق مختلفة منها السماح بحساب المدارات حول أجرام سماوية أخرى. كان قد أوضح أيضاً الأسباب التي جعلت من النظام الشمسي نموذجاً أقرب ما يكون إلى القانون المثالي ليستعملها كبلر في قوانينه.[1]
يستغرق الكوكب عطارد مثلاً 88 يوماً والأرض 365 في مدارهما مرة واحدة حول الشمس، وإذا ضرب كلا الرقمين بنفسه للحصول على مربعهما نحصل على 7744 وبالتالي 133225. ويبلغ الرقم الثاني حوالي 17 أضعاف للأول. ولننتقل الآن إلى نسبة بعدهما عن الشمس. فبُعد عطارد في المتوسط حوالي 36 مليون ميل عن الشمس أما الأرض فتبعد حوالي 93 مليون ميل في المتوسط. واذا ما ضربنا الأرقام بنفسهما مرتين للحصول على القيمة التكعيبية لهما نحصل على 46656 و 804357. وهنا نجد أن النسبة بين هذين الرقمين قريبة جداً من النسبة الأولى اي 17:1.
القانون الأول
http://bb.7fth.com/if/7fth.com13312555691.pngشكل 2: قانون كبلر واضعا الشمس في بؤرة مدار قطع ناقص.
"مدار كل كوكب عبارة عن قطع ناقص تقع الشمس في إحدى بؤرتيه."
يمثل القطع الناقص نموذجاً معيناً من الأشكال الرياضياتية التي تنجم عن دائرة مطالة. كما في الشكل، يلاحظ أن الشمس وإن كانت لا تقع على المركز فهي واقعة على أحد البؤرتين. البؤرة الأخرى تم تعليمها بنقطة خفيفة ولا تأثير فيزيائي لها في حقيقة الأمر.
إن مقدار إطالة ذلك القطع الناقص أو الإهليج مقارنة بالدائرة المثالية يعرف بشذوذه; وهو معامل يتغير من 0 في حالة الدائرة إلى إلى 1 في حالة تم شدّ الدائرة من طرفين إلى أن أصبحت خطاً مستقيماً.
كان كبلر قد عرف أن مقدار الشذوذ في الزهرة 0.007 وعطارد 0.2